A heart attack in a petri dish

Credit: New Jersey Institute of Technology

In petri dishes in her campus laboratory at New Jersey Institute of Technology, Alice Lee is developing colonies of cardiac cells, formed into chambers, that pump and contract like a human heart. Derived from stem cells, these primitive organs will help her achieve a research milestone: to observe in microscopic, real-time detail how the heart repairs itself after injury.

She must first induce an “attack” by damaging the tiny proto-hearts with a frozen rod, thus mobilizing sequential, cell-based repair crews that clear the injury site of debris, and then in a second phase, recruit materials and tools from the neighboring to mend the damage.

“By developing diseased-tissue models, we’re hoping to gain insights that will allow us to improve diagnoses and therapies for cardiac diseases,” says Lee, an assistant professor of biomedical engineering. “These are techniques that cannot be tested in patients.”

Earlier this year, she received a five-year Faculty Early Career Development (CAREER) Award from the National Science Foundation (NSF) to advance understanding of the underlying mechanisms of tissue repair by cell-based therapy. NSF CAREER awards, described by the agency as among its most prestigious, are highly selective grants that support early-career researchers with “the potential to serve as academic role models in research and education and to lead advances in the mission of their department or organization.”

In awarding her the grant, the NSF acknowledged “major hurdles” to date in developing cell-based therapies – restoring damaged tissue by deploying transplanted stem to the injury site—that derive in part from limited knowledge of the biological mechanisms of the

Read the full article from the source…

Leave a Reply

Your email address will not be published. Required fields are marked *